Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Statistics

Defense Dissertation: Selected Problems for High-Dimensional Data - Quantile and Errors-in-variables Regressions

Seyoung Park

Abstract:
This dissertation addresses two problems. First, we study joint quantile regression at multiple quantile levels with high dimensional covariates. Variable selection performed at individual quantile levels may lack stability across neighboring quantiles, making it difficult to understand and to interpret the impact of a given covariate on conditional quantile functions. We propose a Dantzig-type penalization method for sparse model selection at each quantile level which at the same time aims to shrink differences of the selected models across neighboring quantiles. We show model selection consistency, and investigate stability of the selected models across quantiles.
In the second part of the thesis, we consider the class of covariance models that can be expressed as a Kronecker sum. Taking advantage of our theoretical analysis on matrix decomposition, we demonstrate that our methodology yields computationally efficient and statistically convergent estimates. We show that this decomposition may correspond to a representation of the data as signal plus additive noise. This may in turn be used in a regression framework to accommodate measurement error. We assess performance using simulations and illustrate the methods using a study of hawkmoth flight control (Sponberg et al. 2015). We find that the decomposition successfully isolates signal and noise, and reveals a strong-er neural encoding relationship than otherwise would be obtained.

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content