Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: CM-AMO Seminars

Special CM-AMO Seminar | Electronic and Surface Structure of Transition Metal Dichalcogenides and Van der Waals Interfaces

Wencan Jin (Columbia University)

Physics Physics
Physics
Please note this seminar time is 3:00 pm and it is taking place in 340 West Hall.
Transition metal dichalcogenides (TMDCs) have attracted much interest for their potential applications in opto-electronic, spintronics and valleytronics devices. Direct determination of the electronic- and surface structure of TMDCs is crucial to the full understanding of their distinctive properties. In particular, like other atomically thin materials, the interactions with substrate impact the surface structure and morphology of TMDCs, and as a result, their structural and physical properties can be affected. Here, in this talk, I will discuss the electronic structure and surface structure of MoS2 investigated using synchrotron-based spectroscopic photoemission and low energy electron microscopy. Thickness-dependent electronic structure of MoS2 measured by angle-resolved photoemission spectroscopy directly demonstrates the indirect-to-direct bandgap transition when MoS2 thickness is decreased from multilayer to monolayer. Also, the thickness-dependent surface roughness is characterized using selected-area low energy electron diffraction (μ-LEED) and the surface structural relaxation is investigated using LEED I-V measurements combined with dynamical LEED calculations. Finally, bandgap engineering is demonstrated via tuning of the interlayer interactions in van der Waals interfaces by twisting the relative orientation in bilayer-MoS2 and graphene-MoS2-heterostructure systems.
Physics Physics
Physics

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content