Skip to Content

Sponsors

No results

Keywords

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Statistics

Statistics Department Seminar Series: Zhimei Ren, Postdoctoral Research Fellow, Department of Statistics, University of Chicago

"Stable Variable Selection with Knockoffs"

Zhimei Ren Zhimei Ren
Zhimei Ren
Abstract: A common problem in many modern statistical applications is to find a set of important variables—from a pool of many candidates—that explain the response of interest. For this task, model-X knockoffs offers a general framework that can leverage any feature importance measure to produce a variable selection algorithm: it discovers true effects while rigorously controlling the number or fraction of false positives, paving the way for reproducible scientific discoveries. The model-X knockoffs, however, is a randomized procedure that relies on the one-time construction of synthetic (random) variables. Different runs of model-X knockoffs on the same dataset often result in different sets of selected variables, which is not desirable for the reproducibility of the reported results.

In this talk, I will introduce derandomization schemes that aggregate the selection results across multiple runs of the knockoffs algorithm to yield stable selection. In the first part, I will present a derandomization scheme that controls the number of false positives, i.e., the per family error rate (PFER) and the k family-wise error rate (k-FWER). In the second part, I will talk about an alternative derandomization scheme with provable false discovery rate (FDR) control. Equipped with these derandomization steps, the knockoffs framework provides a powerful tool for making reproducible scientific discoveries. The proposed methods are evaluated on both simulated and real data, demonstrating comparable power and dramatically lower selection variability when compared with the original model-X knockoffs.
https://zhimeir.github.io/
Zhimei Ren Zhimei Ren
Zhimei Ren

Explore Similar Events

  •  Loading Similar Events...

Tags


Back to Main Content