Presented By: Quantum Research Institute
Quantum Research Institute Seminar | Integrated Optical Control of Atomic Quantum Systems
Amit Agrawal, Physical Measurement Laboratory (National Institute of Standards and Technology)

Dr. Amit Agrawal, project leader of the Ultrafast Nano-Optics Group within the Physical Measurement Laboratory at the National Institute of Standards and Technology, will be presenting as part of the Quantum Research Institute's Fall seminar series.
Seminar Description:
Optical control of quantum matter – from trapped atoms and ions to quantum dots and defects, is foundational for quantum information science and technology. Development of integrated photonics opens the possibility for realization of scalable circuits with complex functionalities, advancing both science and technology frontiers and enabling real-world applications in quantum sensing and precision measurements. Here, we present our work on scalable, robust and multifunctional nanophotonic interfaces to trap neutral atoms or address trapped ions. Our nanophotonic platform, replacing bulk optical elements, promises increased complexity and functionality in a batch-fabricated optical microsystem ultimately fully replacing the laboratory optical table to enable cold atom clocks and quantum computers.
Seminar Description:
Optical control of quantum matter – from trapped atoms and ions to quantum dots and defects, is foundational for quantum information science and technology. Development of integrated photonics opens the possibility for realization of scalable circuits with complex functionalities, advancing both science and technology frontiers and enabling real-world applications in quantum sensing and precision measurements. Here, we present our work on scalable, robust and multifunctional nanophotonic interfaces to trap neutral atoms or address trapped ions. Our nanophotonic platform, replacing bulk optical elements, promises increased complexity and functionality in a batch-fabricated optical microsystem ultimately fully replacing the laboratory optical table to enable cold atom clocks and quantum computers.