Skip to Content

Sponsors

No results

Keywords

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Biomedical Engineering

Biomedical Engineering Seminar Series

Multiscale Control of Dynamic Hydrogels for Biomedical Applications, with Adrianne M. Rosales, Ph.D.

A speaker talking to a group of students in a classroom. A speaker talking to a group of students in a classroom.
A speaker talking to a group of students in a classroom.
Abstract:
Engineered extracellular matrices (ECMs) are important for cellular therapies and tissue engineering applications; however, synthetic ECMs remain less structurally and biologically complex than natural ECM. In particular, the native ECM is composed of hierarchically structured biopolymers with dynamic properties that change over time. Synthetic ECMs, however, are typically formed from disordered polymers and chemistries that lead to time-invariant properties. Toward this end, we have developed bioinspired strategies to incorporate hierarchical order and dynamic behavior into synthetic hydrogels. We will discuss the chemical and physical mechanisms that lead to multiscale control in these materials, as well as their application toward matrices for human mesenchymal stromal cell culture.
Bio:
Dr. Adrianne Rosales is an Assistant Professor of Chemical Engineering at the University of Texas at Austin. She is a co-lead of the Interdisciplinary Research Group “Fuel-Driven Pluripotent Materials” in UT Austin’s Materials Research Science and Engineering Center. She received her B.S. in Chemical Engineering from UT Austin and obtained her Ph.D. in Chemical Engineering from UC Berkeley. After completing her Ph.D. in 2013, she trained at the University of Colorado Boulder as an NIH NRSA post-doctoral fellow. Adrianne's group at UT Austin focuses on the development of bioinspired polymeric materials to model cellular microenvironments and engineer therapeutic technologies. This work has received emerging investigator recognitions from the Burroughs Wellcome Fund, the NIH, the NSF, and the American Chemical Society Polymeric Materials: Science and Engineering Division.

Zoom:
https://umich.zoom.us/j/99085426766
A speaker talking to a group of students in a classroom. A speaker talking to a group of students in a classroom.
A speaker talking to a group of students in a classroom.

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content