Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Biomedical Engineering

Biomedical Engineering Seminar Series

"Ultra-high-throughput computational imaging: towards a trillion voxels per second," with Kevin Zhou, Ph.D.

A speaker talking to a group of students in a classroom. A speaker talking to a group of students in a classroom.
A speaker talking to a group of students in a classroom.
Abstract:
Traditional biomedical imaging techniques face throughput bottlenecks that limit our ability to study complex dynamic samples like cells, organoids, tissues, and organisms. In particular, hardware-only systems have inherent physical limitations preventing the simultaneous improvement of resolution, field of view, and frame rate. In this seminar, I propose that large-scale, machine learning-accelerated computational imaging will be the key to overcoming these throughput bottlenecks. I demonstrate a variety of examples from my research, ranging from resolution-enhanced, speckle-free tissue imaging with optical coherence refraction tomography, to camera array-based gigapixel microscopy and 4D fluorescence tomography of freely-behaving zebrafish and fruit flies. Critical to the computational scalability is the integration of physics-supervised deep learning into my reconstruction algorithms. Combined with scalable hardware designs, these high-performance computational imaging systems will continue the trend of my research towards ultra-high imaging throughputs, even approaching 1 trillion voxels per second, which will accelerate scientific discovery, big data generation, and tool development across a broad range of biomedical applications.

Bio:
Kevin C. Zhou is a Schmidt Science Fellow and postdoctoral scholar at UC Berkeley, developing high-throughput computational imaging systems with Laura Waller and Hillel Adesnik. Before that, he received his PhD in biomedical engineering at Duke University, where he worked with Joseph Izatt, Warren Warren, Sina Farsiu, and Roarke Horstmeyer, and was supported by the NSF GRFP. He received his BS in biomedical engineering at Yale University, where he was supported by the Barry M. Goldwater Scholarship. Kevin's interdisciplinary research focuses on developing both the optical instrumentation and machine learning-driven algorithms for scalable, high-throughput computational optical imaging systems to advance discovery in biology and medicine.

Zoom:
https://umich.zoom.us/j/94801149707
A speaker talking to a group of students in a classroom. A speaker talking to a group of students in a classroom.
A speaker talking to a group of students in a classroom.

Back to Main Content