Skip to Content

Sponsors

No results

Keywords

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Statistics

Department Seminar Series: Surya Tokdar, Assistant Professor, Department of Statistical Science, Duke University

Joint estimation of quantile planes over arbitrary predictor spaces

In spite of the recent surge of interest in quantile regression, joint estimation of linear quantile planes remains a great challenge in statistics and econometrics. We propose a novel parametrization that characterizes any collection of non-crossing quantile planes over arbitrarily shaped convex predictor domains in any dimension by means of unconstrained scalar, vector and function valued parameters. Statistical models based on this parametrization inherit a fast computation of the likelihood function, enabling penalized likelihood or Bayesian approaches to model fitting. We introduce a complete Bayesian methodology by using Gaussian process prior distributions on the function valued parameters and develop a robust and efficient Markov chain Monte Carlo parameter estimation. The resulting method is shown to offer posterior consistency under mild tail and regularity conditions. We present several illustrative examples where the new method is compared against existing approaches and is found to offer better accuracy, coverage and model fit.

Joint work with Yun Yang (UC Berkeley)

Explore Similar Events

  •  Loading Similar Events...

Keywords


Back to Main Content