Skip to Content

Sponsors

No results

Keywords

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Statistics

Statistics Department Seminar Series: Maria DeYoreo, Ph.D., Department of Statistical Science, Duke University

“Dynamic ordinal regression modeling for temporal relationships between fish maturity, length, and age"

Flyer Flyer
Flyer
Abstract:

I introduce a Bayesian nonparametric framework for modeling ordinal regression relationships which evolve in discrete time. The motivating application involves a key problem in fisheries research on estimating relationships between age, length and maturity (recorded on an ordinal scale), across time. The methodology builds from nonparametric mixture modeling for the joint stochastic mechanism of covariates and latent continuous responses. This approach yields flexible inference for ordinal regression functions while at the same time avoiding challenges present in parametric models. A novel dependent Dirichlet process prior for time-dependent mixing distributions extends the model to the dynamic setting. The methodology is applied to study relationships between maturity, age, and length for Chilipepper rockfish, using data collected over 15 years along the coast of California. I also outline related methodology for effectively handling missing values in heterogeneous data, and discuss current work on data fusion and integration.

Explore Similar Events

  •  Loading Similar Events...

Keywords


Back to Main Content