Skip to Content

Sponsors

No results

Keywords

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Statistics

Statistics Department Seminar Series: Han Liu, Assistant Professor, Statistical Machine Learning Lab, Princeton University

“Combinatorial Inference"

Flyer Flyer
Flyer
We propose a new family of combinatorial inference problems for graphical models. Unlike classical statistical inference where the main interest is point estimation or parameter testing of Euclidean parameters, combinatorial inference aims at testing the global structure of the underlying graph. Examples include testing the graph connectivity, the presence of a cycle of certain size, or the maximum degree of the graph. To begin with, we develop a unified theory for the fundamental limits of a large family of combinatorial inference problems. We propose new structural packing entropies to characterize how the complexity of combinatorial graph structures impacts the corresponding minimax lower bounds. On the other hand, we propose a family of practical structural testing algorithms to match the obtained lower bounds. We use a case study of brain network analysis to illustrate the usefulness of these proposed methods.

Explore Similar Events

  •  Loading Similar Events...

Keywords


Back to Main Content