Skip to Content

Sponsors

No results

Keywords

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Statistics

Statistics Department Seminar Series: John Duchi, Assistant Professor, Statistics and Electrical Engineering, Stanford University

“Solving composite optimization problems, with applications to phase retrieval and nonlinear modeling”

Flyer Flyer
Flyer
Abstract:

We consider minimization of stochastic functionals that are compositions of a (potentially) non-smooth convex function h and smooth function c. We develop two stochastic methods--a stochastic prox-linear algorithm and a stochastic (generalized) sub-gradient procedure--and prove that, under mild technical conditions, each converges to first-order stationary points of the stochastic objective. Additionally, we analyze this problem class in the context of phase retrieval and other nonlinear modeling problems, showing that we can solve these problems (even with faulty measurements) with extremely high probability under appropriate random measurement models. We provide substantial experiments investigating our methods, indicating the practical effectiveness of the procedures.

Explore Similar Events

  •  Loading Similar Events...

Keywords


Back to Main Content