Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: The Optics Society at the University of Michigan (OSUM)

AAOSA-OSUM Seminar: Using Relativistic Intensity Laser Pulses to Generate Huge Magnetic Fields and a Magnetic Reconnection Geometry

Prof. Louise Willingale

AAOSA-OSUM Seminar by Prof. Willingale AAOSA-OSUM Seminar by Prof. Willingale
AAOSA-OSUM Seminar by Prof. Willingale
The 2018 Nobel Prize in Physics technique of chirped pulse amplification (CPA) can be used to
produce light pulses that can be focused to intensities where the electric field oscillates electrons at
relativistic velocities. The currents due to the relativistic electrons can generate huge, dynamic fields within a laboratory plasma. Plasma dynamics in astrophysical plasmas are strongly impacted by magnetic field topology. However, direct measurements of the outer space plasma conditions and fields are challenging, so laboratory studies of magnetic dynamics and reconnection provide an important platform for testing theories and characterizing different regimes. The extremely energetic class of astrophysical phenomena - including high-energy pulsar winds, gamma ray bursts, and jets from galactic nuclei - have plasma conditions where the energy density of the magnetic fields exceeds the rest mass energy density (σ_cold = B^2/(μ_0 n_e m_e c^2) > 1, the cold magnetization parameter). I will show experimental measurements, along with numerical modeling, of short-pulse, high-intensity laser-plasma interactions that produce extremely strong magnetic fields (>100 T) in a plasma such that σcold > 1. The generation and the dynamics of these magnetic fields under different target conditions was studied, and relativistic intensity laser-driven, magnetic reconnection experiments were performed. I’ll describe how X-ray imaging allows the observation of the fast electron dynamics. Evidence of magnetic reconnection was identified by the plasma’s X-ray emission patterns, changes to the electron spectrum, and by measuring the reconnection timescales.
AAOSA-OSUM Seminar by Prof. Willingale AAOSA-OSUM Seminar by Prof. Willingale
AAOSA-OSUM Seminar by Prof. Willingale

Back to Main Content