Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Michigan Institute for Computational Discovery and Engineering

Narayana Aluru: Computational Nanoscale Hydrodynamics

MICDE Seminar Series

Aluru Aluru
Aluru
Many applications in biology, engineering and science rely on efficient hydrodynamic transport through nanometer scale pores and channels. For example, channels and pores in cellular membranes regulate the functionality of the cell by selectively and efficiently exchanging water and ions between extra and intra cellular environments. Selective pores in ultrathin membranes have been shown to be highly efficient for water desalination and power generation. Classical theories often fail to describe fluid physics at nanometer scale. For example, density layering, size dependent fluid properties, restricted translational and rotational motions, charge inversion, flow reversal and several other important phenomena have been observed at nanometer scale. The focus of this talk is to develop efficient theories and computational approaches to accurately describe fluid physics at nanometer scales. First, we will introduce an empirical potential-based quasi-continuum theory (EQT) to accurately predict the structure of confined fluids. We show that the density layering from EQT matches well with molecular dynamics (MD) and EQT is many orders of magnitude faster compared to MD. Next, we show that the EQT framework can be combined with the generalized Langevin theory to compute diffusion of confined fluids and with the classical Navier-Stokes equations to compute the transport of confined fluids. We will show several examples to demonstrate the accuracy and efficiency of the quasi-continuum theory for confined fluids.

Professor Aluru studies problems at the crossroads of mechanical engineering, electrical engineering, materials science and chemical engineering. His work in the area of microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) revealed previously unknown nonlinear dynamic phenomena, such as complex oscillations, period doubling bifurcation to chaos, and U-sequence.
Aluru Aluru
Aluru

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content