Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Aerospace Engineering

Defense Dissertation: Development of a Hypersonic Aerothermoelastic Framework and Its Application to Flutter and Aerothermoelastic Scaling of Skin Panels

Daning Huang

daning daning
daning
Defense Committee
Chair: Professor Peretz P. Friedmann
Cognate: Professor Bogdan Epureanu
Members: Professor Carlos E. S. Cesnik, Professor Joaquim R. R. A. Martins

Presentation Info
Date: 04/24/2019
Time: 3:30 pm
Location: FXB 1044

Airbreathing hypersonic flight has the potential to revolutionize global transportation and has been one of the last frontiers in the aerospace industry for over seven decades. Unlike conventional commercial aircraft, air-breathing hypersonic vehicles are naturally interdisciplinary: the aerodynamic, structural and thermal responses are tightly coupled. One of the unresolved technical challenges is the lack of hypersonic aerothermoelastic scaling laws for conducting aerothermoelastic testing. Once such scaling laws were available, the flight test data obtained on scaled models could be extrapolated to full-size vehicles, resulting in a dramatic cost reduction in the development of hypersonic vehicles.

This dissertation aims to achieve refined hypersonic aerothermoelastic scaling laws using a novel two-pronged methodology, which combines the classical scaling approach with augmentation from numerical simulations of the specific aerothermoelastic problem. First, an efficient aerothermoelastic computational framework is developed. The framework adopts a novel technique that enables the extrapolation of surrogate-based interpolative reduced order aerodynamic models and achieves computational acceleration by four orders of magnitude. The framework also features the linearized stability analysis for efficient identification of aerothermoelastic stability boundary and a tightly-coupled scheme for near-real-time aerothermoelastic simulation of extended flight time. On top of the framework, the development of new aerothermoelastic scaling laws is formulated in the form of a constrained optimization problem, which is solved using a Bayesian optimization approach. The effectiveness of the two-pronged approach is demonstrated by its application to the refined hypersonic aerothermoelastic scaling of a composite skin panel configuration.
daning daning
daning

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content