Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Chemistry

Revealing the chemistry in quantum chemistry: from diatomics to proton coupled electron transfer in enzymes

Gerald Knizia (Penn State)

With quantum chemistry nowadays most physical properties of molecules can be easily and (often) accurately calculated—for example, DFT calculations of molecular structure, reaction mechanisms, and reaction energetics have become routine complements to organic chemistry. However, the techniques behind these calculations afford no easy way of "making sense" of the computed quantities, like orbitals and wave functions. Additionally, many central empirical concepts of chemistry, including concepts as basic as partial charges, bond orders, or even covalent bonds themselves, have no consensus physical definition.

We here argue that, once we properly define what is an "atomic orbital" in a molecule, quantities representing most other empirical concepts can be straight-forwardly derived from simple physical arguments, and then easily calculated. In this sense, we show how our Intrinsic Atomic Orbital (IAO) technique gives rise to partial charges and bond orders, and to bond orbitals, which represent the electron pairs of Lewis structures (σ- and π-bonds). Even curly-arrow reaction mechanisms can be readily derived!

Based on selected examples of both us and others, we how IAOs allow the analysis of bonding in novel and exotic chemical species, and how the method played a key role in understanding metal-catalyzed reaction mechanisms.
Gerald Knizia (Penn State)

Co-Sponsored By

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content