Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Statistics

Statistics Department Seminar Series: Chiara Sabatti, Professor of Biomedical Data Science and Statistics, Department of Statistics, Stanford University

"Fairness and uncertainty assessment"

Chiara Sabatti Chiara Sabatti
Chiara Sabatti
Abstract: Recent progress in machine learning (ML) provides us with many potentially effective tools to learn from datasets of ever increasing sizes and make useful predictions. How do we know that these tools can be trusted in critical and high-sensitivity systems? If a learning algorithm predicts the GPA of a prospective college applicant, what guarantees do we have concerning the accuracy of this prediction? How do we know that it is not biased against certain groups of applicants? I will introduce examples of diverse domain applications where these questions are important, as well as statistical ideas to ensure that the learned models apply to individuals in an equitable manner. In work with Yaniv Romano, Rina Barber, and Emmanuel Candes, we show how to achieve some fairness objectives we do not need to “open up the black box,” and try understanding its underpinnings. Rather, we discuss broad methodologies — ex. conformal inference — that can be wrapped around any black box to produce results that can be trusted and that are “fair.’’

This seminar will be livestreamed via Zoom https://umich.zoom.us/j/94350208889.
Chiara Sabatti Chiara Sabatti
Chiara Sabatti

Livestream Information

 Livestream
April 9, 2021 (Friday) 10:00am

Explore Similar Events

  •  Loading Similar Events...

Tags

Report Event As Inappropriate Contact Event Organizers
Back to Main Content