Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: LSA Biophysics

Balancing spatial heterogeneity and migration to slow the evolution of resistance in a bacterial pathogen

Anh Huynh

Spatial heterogeneity can dramatically impact evolution in bacterial communities, raising the question of whether spatial profiles of drug concentration can be tuned to slow the emergence of antibiotic resistance. In this work, we combine lab evolution experiments in spatially connected, computer-controlled chemostats with mathematical models to investigate resistance evolution in E. faecalis, an opportunistic bacterial pathogen. We find that both the rate of adaptation to doxycycline, a protein-synthesis inhibiting antibiotic, and the associated cost of resistance in the associated mutants depends strongly on drug concentration in spatially uniform populations. Interestingly, when spatially separated subpopulations are exposed to different concentrations of drug, adaptation can be dramatically slowed by tuning the rate of migration between habitats, leading to selection for phenotypically distinct resistant mutants. Our results highlight the rich evolutionary dynamics of adaptation in spatially connected habitats and indicate that resistance evolution can be slowed by balancing evolutionary trade-offs of migration and heterogeneity.

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content