Skip to Content


No results


No results


No results

Search Results


No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: LSA Biophysics

Analyzing Anomalous Diffusion in Single-Molecule Tracks with Nonparametric Bayesian Inference and Deep Learning

Ziyuan Chen

Single-particle tracking (SPT) enables the investigation of biomolecular dynamics at a high temporal and spatial resolution in living cells, and the analysis of these SPT datasets can reveal biochemical interactions and mechanisms. We have developed a new SPT analysis framework, NOBIAS, which applies nonparametric Bayesian statistics and deep learning approaches to thoroughly analyze SPT datasets. We utilize a Hierarchical Dirichlet process Hidden Markov Model (HDP-HMM) to infer the number of diffusive states and the associated dynamics, populations and step labels for each diffusive state, then we apply a Recurrent Neural Network (RNN) to classify the diffusion type of each diffusive state. We further validate the performance of NOBIAS with simulated tracks and the quantify diffusion of single outer-membrane proteins in Bacteroides thetaiotaomicron.

Explore Similar Events

  •  Loading Similar Events...
Report Event As Inappropriate Contact Event Organizers
Back to Main Content