Skip to Content


No results


No results


No results

Search Results


No results
Search events using: keywords, sponsors, locations or event type
When / Where

Presented By: U-M Industrial & Operations Engineering

SEMINAR: "Detecting equivalence between iterative algorithms for optimization" – Madeleine Richards Udell

Madeleine Richards Udell, Cornell University Madeleine Richards Udell, Cornell University
Madeleine Richards Udell, Cornell University
The Departmental Seminar Series is open to all. U-M Industrial and Operations Engineering graduate students and faculty are especially encouraged to attend.

Title: Detecting equivalence between iterative algorithms for optimization

When are two algorithms the same? How can we be sure a recently proposed algorithm is novel, and not a minor twist on an existing method? In this talk, we present a framework for reasoning about equivalence between a broad class of iterative algorithms, with a focus on algorithms designed for convex optimization. We propose several notions of what it means for two algorithms to be equivalent, and provide computationally tractable means to detect equivalence. Our main definition, oracle equivalence, states that two algorithms are equivalent if they result in the same sequence of calls to the function oracles (for suitable initialization). Borrowing from control theory, we use state-space realizations to represent algorithms and characterize algorithm equivalence via transfer functions. Our framework can also identify and characterize some algorithm transformations including permutations of the update equations, repetition of the iteration, and conjugation of some of the function oracles in the algorithm. A software package named Linnaeus implements the framework and makes it easy to find other iterative algorithms that are equivalent to an input algorithm. More broadly, this framework and software advances the goal of making mathematics searchable.
Based on joint work with Shipu Zhao and Laurent Lessard

Madeleine Udell is Assistant Professor of Operations Research and Information Engineering and Richard and Sybil Smith Sesquicentennial Fellow at Cornell University. She studies optimization and machine learning for large scale data analysis and control, with applications in marketing, demographic modeling, medical informatics, engineering system design, and automated machine learning. She has received several awards, including an Alfred P. Sloan Research Fellowship (2021), a National Science Foundation CAREER award (2020), an Office of Naval Research (ONR) Young Investigator Award (2020), a Cornell Engineering Research Excellence Award (2020), an INFORMS Optimization Society Best Student Paper Award (as advisor) (2019), and INFORMS Doing Good with Good OR (2018). Her work is supported by grants from the NSF, ONR, DARPA, the Canadian Institutes of Health, and Capital One.
Her research in optimization centers on detecting and exploiting novel structures in optimization problems, with a particular focus on convex and low rank problems. These structures lead the way to automatic proofs of optimality, better complexity guarantees, and faster, more memory-efficient algorithms. She has developed a number of open source libraries for modeling and solving optimization problems, including Convex.jl, one of the top tools in the Julia language for technical computing.
Her research in machine learning centers on methods for imputing missing data in large tabular data sets. Her work on generalized low rank models (GLRMs) extends principal components analysis (PCA) to embed tabular data sets with heterogeneous (numerical, Boolean, categorical, and ordinal) types into a low dimensional space, providing a coherent framework for compressing, denoising, and imputing missing entries. This research enables novel applications in medical informatics, quantitative finance, marketing, causal inference, and automated machine learning, among others.
At Cornell, Madeleine has advised more than 50 students and postdocs. She has developed several new courses in optimization and machine learning, earning the Douglas Whitney ’61 Engineering Teaching Excellence Award in 2018.
Madeleine completed her PhD at Stanford University in Computational & Mathematical Engineering in 2015 under the supervision of Stephen Boyd, and a one year postdoctoral fellowship at Caltech in the Center for the Mathematics of Information hosted by Professor Joel Tropp. At Stanford, she was awarded a NSF Graduate Fellowship, a Gabilan Graduate Fellowship, and a Gerald J. Lieberman Fellowship, and was selected as the doctoral student member of Stanford's School of Engineering Future Committee to develop a road-map for the future of engineering at Stanford over the next 10–20 years. She received a B.S. degree in Mathematics and Physics, summa cum laude, with honors in mathematics and in physics, from Yale University.
Madeleine Richards Udell, Cornell University Madeleine Richards Udell, Cornell University
Madeleine Richards Udell, Cornell University

Livestream Information

September 30, 2021 (Thursday) 3:00pm
Meeting ID: 98267816911

Explore Similar Events

  •  Loading Similar Events...
Report Event As Inappropriate Contact Event Organizers
Back to Main Content