Skip to Content

Sponsors

No results

Keywords

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Michigan Program in Survey and Data Science

MPSDS JPSM Seminar Series - Network Size: Measurement and Errors

Ai Rene Ong and Yibo Wang

Flyer Flyer
Flyer
MPSDS JPSM Seminar Series
March 8, 2023
12:00 - 1:00 EST

Abstract
Respondent driven sampling (RDS) is a sampling method that leverages the respondents' networks to reach more members of the target population. In RDS, the size of the respondents' social network (also known as personal network size (PNS), or respondent's degree) is important in both the study operations and in estimation. A commonly used estimation of degree is the self-reported data from the interview, which typically has substantial measurement error, and, specifically, is found to be frequently rounded to a multiple of five. Measurement error in the PNS can introduce biased estimates for RDS, especially if the misreporting of the degree is associated with the outcome to be estimated.

This brown bag will present two related studies on the measurement of PNS. The first study uses two sets of data; 1) semi-structured in-depth interviews conducted over Zoom with 19 adult respondents of various ages, gender identities (transgender, nonbinary, cisgender), race, and sexual orientations (gay, lesbian, bi), 2) an RDS web survey targeting the adult LGBT population (n = 394). Thematic analysis conducted on the semi-structured interview transcripts showed a large variation in how respondents define "knowing" someone; for some respondents, it covers a larger network than the "recruitable" network (the network of people respondents are likely to think of recruiting to an RDS study). Meanwhile, the web-RDS shows that the more restrictive PNS questions yielded more realistic ranges for a "recruitable" network, with less proportion of rounded responses on the more restrictive PNS questions.

Motivated by the desire to improve the degree estimation in RDS, the second study presents a latent variable model to make inferences about participants’ actual degrees and potential reporting behaviors. Specifically, individual-level degree estimation will be obtained by revealing the association between the actual degree and relevant personal characteristics and blending their response to “How many [a particular sub-population] do you know in the target population?” Simulation studies demonstrate that the proposed method delivers sensible estimations about the individual degree.

Bios
Ai Rene Ong works at American Institutes for Research (AIR) as a Researcher/Survey Methodologist in the area of Education Statistics. She graduated with a PhD in Survey Methodology from the University of Michigan in 2022. Her dissertation research was on the measurement of network size and the mechanism of peer recruitment in Respondent Driven Sampling — a sampling method typically used for hard-to-sample populations.

Yibo Wang is a 3rd year Ph.D. candidate from the department of Biostatistics. She is now working with Dr. Sunghee Lee and Dr. Michael Elliott on measurement estimation in Respondent Driven Sampling

Michigan Program in Survey and Data Science (MPSDS)
The University of Michigan Program in Survey Methodology was established in 2001 seeking to train future generations of survey and data scientists. In 2021, we changed our name to the Michigan Program in Survey and Data Science. Our curriculum is concerned with a broad set of data sources including survey data, but also including social media posts, sensor data, and administrative records, as well as analytic methods for working with these new data sources. And we bring to data science a focus on data quality — which is not at the center of traditional data science. The new name speaks to what we teach and work on at the intersection of social research and data. The program offers doctorate and master of science degrees and a certificate through the University of Michigan. The program's home is the Institute for Social Research, the world's largest academically-based social science research institute.

Summer Institute in Survey Research Techniques (SISRT)
The mission of the Summer Institute is to provide rigorous and high quality graduate training in all phases of survey research. The program teaches state-of-the-art practice and theory in the design, implementation, and analysis of surveys. The Summer Institute in Survey Research Techniques has presented courses on the sample survey since the summer of 1948, and has offered such courses every summer since. Graduate-level courses through the Program in Survey and Data Science are offered from June 5 through July 28 and available to enroll in as a Summer Scholar.

The Summer Institute uses the sample survey as the basic instrument for the scientific measurement of human activity. It presents sample survey methods in courses designed to meet the educational needs of those specializing in social and behavioral research such as professionals in business, public health, natural resources, law, medicine, nursing, social work, and many other domains of study.

Back to Main Content