Skip to Content

Sponsors

No results

Keywords

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Leinweber Center for Theoretical Physics

HET Seminar | On entropy growth in perturbative scattering

Temple He (Caltech)

Inspired by the second law of thermodynamics, we study the change in subsystem entropy generated by dynamical unitary evolution of a product state in a bipartite system. Working at leading order in perturbative interactions, we prove that the quantum n-Tsallis entropy of a subsystem never decreases, provided that subsystem is initialized as a statistical mixture of states of equal probability. This is true for any choice of interactions and any initialization of the complementary subsystem. When this condition on the initial state is violated, it is always possible to explicitly construct a "Maxwell's demon'' process that decreases the subsystem entropy. Remarkably, for the case of particle scattering, the circuit diagrams corresponding to n-Tsallis entropy are the same as the on-shell diagrams that have appeared in the modern scattering amplitudes program, and the entropy growth is intimately related to the nonnegativity of cross-sections.

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content