Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Mathematics

Applied Interdisciplinary Mathematics

Convex variational methods for multiclass data segmentation on graphs

Graph-based variational methods have recently shown to be highly competitive for various classification problems of high-dimensional data, but are inherently difficult to handle from an optimization perspective. In this talk, we will describe a convex relaxation for a certain set of graph-based multiclass data segmentation problems, featuring region homogeneity terms, supervised information and/or certain constraints or penalty terms acting on the class sizes. Particular applications include semi-supervised classification of high-dimensional data and unsupervised segmentation of unstructured 3D point clouds. Theoretical analysis indicates that the convex relaxation closely approximates the original NP-hard problems, and these observations are also confirmed experimentally. An efficient duality based algorithm is developed that handles all constraints on the labeling function implicitly. Experiments on semi-supervised classification indicate consistently higher accuracies than related local minimization approaches, and considerably so when the training data are not uniformly distributed among the data set. The accuracies are also highly competitive against a wide range of other established methods on three benchmark datasets. Experiments on 3D point clouds acquired by a LaDAR in outdoor scenes, demonstrate that the scenes can accurately be segmented into object classes such as vegetation, the ground plane and human-made structures. Speaker(s): Ekaterina Merkurjev (Michigan State University)

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content