Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: HET Brown Bag Series

HET Brown Bag Seminars | Testing Models of Dark Matter and Modifications to Gravity using Local Milky Way Observables

Oren Slone (PCTS at Princeton)

Galactic rotation curves are often considered the first robust evidence for the existence of dark matter. However, even in the presence of a dark matter halo, other galactic-scale observations, such as the Baryonic Tully-Fisher Relation and the Radial Acceleration Relation, remain challenging to explain. This has motivated various models of dark matter as well as long-distance, infrared (IR) modifications to gravity as an alternative to the dark matter hypothesis. We present a framework to test a general class of such models using local Milky Way observables, including the vertical acceleration field, the rotation curve, the baryonic surface density, and the stellar disk profile. In this talk I will focus on models that predict scalar amplifications of gravity, i.e., models that increase the magnitude but do not change the direction of the gravitational acceleration. MOdified Newtonian Dynamics (MOND) as well as superfluid dark matter are examples. We find that models of this type are in tension with observations of the Milky Way scale radius and bulge mass and that cold non-interacting dark matter provides a better fit to the data. We conclude that models that result in a MOND-like force struggle to simultaneously explain both the rotational velocity and vertical motion of nearby stars in the Milky Way. A future publication will extend this analysis to include other models such as Strongly Interacting Dark Matter (SIDM).

Co-Sponsored By

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content