Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Mathematics

Applied Interdisciplinary Mathematics (AIM) Seminar

Multi-scale numerical modeling of sorption kinetics

The trapping of diffusing particles by either a single or a distribution of moving traps is an interesting topic that has been employed to model a variety of different real problems in chemistry, physics and biology. Here we study the dynamics of diffusing particles in a domain with an oscillating bubble. Laboratory experiments provide evidence of a non monotone behavior in time of the concentration of particles by a detector located behind the bubble, under suitable experimental condition. A comprehensive explanation of the phenomenon is not yet fully available. The particles are attracted and trapped near the surface of the bubble. The basic mathematical model is a drift-diffusion model, where the particles diffuse and feel the potential of the bubble when they are near its surface. A tentative explanation of the mechanism is based on two-carrier dynamics.
The numerical simulation of the system presents two multi-scale challenges. One is spatial: the range of the bubble potential is confined within a few microns at the bubble surface, while the bubble radius is of the order of a millimeter, so a fully resolved solution would be too expensive. The second challenge is on the time scale: the bubble oscillates with a frequency of the order of 100 Hz, while the diffusion time scale is of the order of 1000 seconds, this requiring at least one million time steps to fully resolve the problem in time.
A reduced model is derived to solve the multi-scale problem it space for the single carrier dynamics: the interaction with the bubble is modeled as a very thin layer, with a particle surface density proportional to the local density in the bulk, near the bubble. In the rest of the domain the particle density satisfies just a diffusion equation, with suitable boundary conditions on the bubble, deduced from conservation properties.
The model is carefully tested on problems in 1D, 2D planar and 3D axis-symmetric geometry. The equation is discretized on a regular Cartesian mesh, using a ghost-point approach, and solved by Crank-Nicolson scheme. The implicit step is efficiently solved by a suitably adapted multi-grid method. The amplitude of the bubble oscillations is small compared to the bubble radius. We take advantage of this fact by replacing the time dependent position by a suitable time dependent velocity at the bubble surface. Because of the low Reynolds number, the velocity distribution is computed by Stokes approximation. The multi-scale challenge in time, as well as the multi-scale model for multi-carrier dynamics are still under investigation. Speaker(s): Giovanni Russo (University of Catania and University of Michigan)

Explore Similar Events

  •  Loading Similar Events...

Back to Main Content