Skip to Content

Sponsors

No results

Tags

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: DCMB Tools and Technology Seminar

DCM&B Tools and Technology Seminar

Yang Li, “ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks”

Contact-map of a protein sequence dictates the global topology of structural fold. Accurate prediction of the contact-map is thus essential to protein 3D structure prediction, which is particularly useful for the protein sequences that do not have close homology templates in the Protein Data Bank.

In this talk, we present a new method, ResPRE, to predict residue-level protein contacts using inverse covariance matrix (or precision matrix) of multiple sequence alignments (MSAs) through deep residual convolutional neural network training. Detailed data analyses show that the major advantage of ResPRE lies at the utilization of precision matrix that helps rule out transitional noises of contact-maps compared with the previously used covariance matrix. Meanwhile, the residual network with parallel shortcut layer connections increases the learning ability of deep neural network training. It was also found that appropriate collection of MSAs can further improve the accuracy of final contact-map predictions.

Tool Link: https://zhanglab.ccmb.med.umich.edu/ResPRE

URL for remote viewing: https://umich-health.zoom.us/j/94886745590?pwd=LzhLU243K2ZhbXNzU1BJRHQ5V25BZz09

Explore Similar Events

  •  Loading Similar Events...
Report Event As Inappropriate Contact Event Organizers
Back to Main Content