Skip to Content

Sponsors

No results

Keywords

No results

Types

No results

Search Results

Events

No results
Search events using: keywords, sponsors, locations or event type
When / Where
All occurrences of this event have passed.
This listing is displayed for historical purposes.

Presented By: Department of Mathematics

Financial/Actuarial Mathematics Seminar

Quickest real-time detection of a Brownian coordinate drift

Consider the motion of a Brownian particle in two or more dimensions, whose coordinate processes are standard Brownian motions with zero drift initially, and then at some random/unobservable time, one of the coordinate processes gets a (known) non-zero drift permanently. Given that the position of the Brownian particle is being observed in real time, the problem is to detect the time at which a coordinate process gets the drift as accurately as possible. We solve this problem in the most uncertain scenario when the random/unobservable time is (i) exponentially distributed and (ii) independent from the initial motion without drift. The solution is expressed in terms of a stopping time that minimizes the probability of a false early detection and the expected delay of a missed late detection. To our knowledge this is the first time that such a problem has been solved exactly in the literature.

This paper is joint work with Goran Peskir (The University of Manchester) and is currently in press at The Annals of Applied Probability Speaker(s): Philip Ernst (Rice University)

Explore Similar Events

  •  Loading Similar Events...

Keywords


Back to Main Content